
Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Transforming The Code:
More Than Meets The Eye

Doni Pracner

Department of Mathematics and Informatics
Faculty of Sciences

University of Novi Sad

12th Workshop
“Software Engineering, Education & Reverse Engineering”

2 – 9 September 2012, Opatija, Croatia

1 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Presentation Organization

1 Introduction
Software Evolution
WSL – Wide Spectrum Language

2 Assembly Transformation Process
Our Transformation Process
Problems

3 (Micro)Java Bytecode
Bytecode
Type System

4 Summary
Results and open questions

2 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Presentation Organisation

1 Introduction
Software Evolution
WSL – Wide Spectrum Language

2 Assembly Transformation Process
Our Transformation Process
Problems

3 (Micro)Java Bytecode
Bytecode
Type System

4 Summary
Results and open questions

3 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

“Change in all things is sweet.”
— Aristotle

Therefore:
Aristotle was not a software maintainer
Software maintainers have a high diabetes risk

4 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

“Change in all things is sweet.”
— Aristotle

Therefore:
Aristotle was not a software maintainer
Software maintainers have a high diabetes risk

4 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

“Change in all things is sweet.”
— Aristotle

Therefore:
Aristotle was not a software maintainer
Software maintainers have a high diabetes risk

4 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Software Evolution

Software does not degrade with time on its own, the
environment changes
A need for constant maintainance and enhancement
Software Evolution is (largely) repeated reengineering.

Previously our group built tools with aim to make old, low
level, assembly code easier to understand, and hopefully
restructure it.
Currently we are working on doing similar things with Java
Bytecode.

5 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

WSL – Wide Spectrum Language

The tools use WSL
Developed by Martin Ward (since 1989)
Strong mathematical core
Formal transformations
Wide spectrum: from abstract specifications to low level
program code
MetaWSL – operations on WSL code
Successfully used in migrating legacy assembly code to
maintainable C/COBOL code
Implemented as FermaT program transformation system

6 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Presentation Organisation

1 Introduction
Software Evolution
WSL – Wide Spectrum Language

2 Assembly Transformation Process
Our Transformation Process
Problems

3 (Micro)Java Bytecode
Bytecode
Type System

4 Summary
Results and open questions

7 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Our transformation process

Assembly

asm2wsl

WSL

transf.wsl

Structured

WSL

manual

transf.
manual

transf.

Figure: Work-flow diagram

asm2wsl and transf.wsl were built “around” WSL
Main goal is to get a high level version of the original
program.

8 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Asm2wsl application

Translates a subset of x86 assembly to WSL
Mostly presumes 80286 for simplicity

Implemented in Java
Basically a line by line translator. Focus is on translating all
aspects, not optimization (at this stage)
Uses Action systems built into WSL for handling
unstructured code
We work with a “virtual” processor, simulating:

Processor registers (with Low and High parts)
Flags, overflow
Stack – a list
Labels – Action system names
Some special macros are recognized and translated directly
Procedures – nested Action systems

9 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Automatic transformations – transf.wsl

A small script to call the existing transformations
Main transformations:

Collapse Action Systems
Transform DO . . . OD loops
Constant propagation
Remove Redundant
Flag removal

Translating assembly programs to WSL so we can:
Generate call diagrams for easier understanding of original
code;
Automatically transform the code to much simpler versions;
Optionally to manually tweak the results with more
transformations

10 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Problems

Questions of feasibility of an all-high-level translation
Problematic standards – order of operands, macros,
architectures, various “hacks”, input/output
Lack of a good assembly code base to experiment on
Little experience with coding assembly – lack of “feel”
Has been done in other ways (with auxiliary files)

Plan: use mainly in Software Evolution courses for
examples and adapt if needed

11 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Presentation Organisation

1 Introduction
Software Evolution
WSL – Wide Spectrum Language

2 Assembly Transformation Process
Our Transformation Process
Problems

3 (Micro)Java Bytecode
Bytecode
Type System

4 Summary
Results and open questions

12 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Java Bytecode

Similar to “classic” assembly in many ways
Has a standard virtual machine
Widely used, even by other language compilers
A lot of code available, as well as experience in working
with it.

Plan: build translators to and from WSL
Useful for formal verification or transformation, as well as
code compiled from non-Java languages

13 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

MicroJava Bytecode

First step: use MicroJava – proof of concept
Developed by Hanspeter Moessenboeck, for use in
Compiler Construction courses; not the same as “Java ME”
Concepts are similar to “full” Java Bytecode, but simplified
Less instructions, only int and char primitive types, arrays
and basic classes
MJ Bytecode does not encode types
New tool mjc2wsl (mjc – MicroJava Compiled)
Similar in many ways to asm2wsl – local variables, stack
etc.

14 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Generalized transformation process

Figure: Generalized work-flow diagram

15 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Type system

WSL has no type system
Therefore transformations can’t check type consistency,
possible source of errors.
This is necessary for “full” Java Bytecode
A Wide Spectrum Type System was developed by Matthias
Ladkau in his PhD thesis
Not yet fully integrated into FermaT
It could be used to improve many of the transformations –
one of the goals of this project

16 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Presentation Organisation

1 Introduction
Software Evolution
WSL – Wide Spectrum Language

2 Assembly Transformation Process
Our Transformation Process
Problems

3 (Micro)Java Bytecode
Bytecode
Type System

4 Summary
Results and open questions

17 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Summary

Previously: tools for some basic assembly conversion and
transformation
New tools for translating MicroJava Bytecode (simplified
Java)
Future work

Further work on the MJ Bytecode translator and
transformations
Development of WSL to MJ Bytecode translators
Integration of the Wide Spectrum Type System into FermaT
Development of Java Bytecode translators to and from WSL

18 / 19



Introduction Assembly Transformation Process (Micro)Java Bytecode Summary

Thank you for your attention
Questions?

19 / 19


	Introduction
	Software Evolution
	WSL – Wide Spectrum Language

	Assembly Transformation Process
	Our Transformation Process
	Problems

	(Micro)Java Bytecode
	Bytecode
	Type System

	Summary
	Results and open questions


