Doni Pracner

Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad

12th Workshop
“Software Engineering, Education & Reverse Engineering
2 — 9 September 2012, Opatija, Croatia

Sy
@
«O0)>» «F»r « =

Er <«

L Qe
/ 9

Introduction Assembly Transformation Process (Micro)Java Bytecode
000 0000 0000

Presentation Organization

0 Introduction
@ Software Evolution
@ WSL — Wide Spectrum Language

e Assembly Transformation Process
@ Our Transformation Process
@ Problems

@ (Micro)Java Bytecode
@ Bytecode
@ Type System

© summary
@ Results and open questions

Summary
[e]e]

Wi,
S|
S\i=
g =
of
Gpeyes®

@ Introduction

@ Software Evolution
@ WSL — Wide Spectrum Language
Q Assembly Transformation Process
@ Our Transformation Process
@ Problems

Q (Micro)Java Bytecode
@ Bytecode

@ Type System
© summary

@ Results and open questions

«0)>» «F»r « =)»

— Avristotle l

Software maintainers have a high diabetes risk

S
«0)>» «F»r « =)»

<

Therefore:

— Avristotle I

@ Aristotle was not a software maintainer

® Software maintainers have a high diabetes risk

— Avristotle I
Therefore:

@ Aristotle was not a software maintainer

@ Software maintainers have a high diabetes risk

n
§
g

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
oeo 0000 0000 [e]e]

Software Evolution

@ Software does not degrade with time on its own, the
environment changes

@ A need for constant maintainance and enhancement
@ Software Evolution is (largely) repeated reengineering.

@ Previously our group built tools with aim to make old, low
level, assembly code easier to understand, and hopefully
restructure it.

@ Currently we are working on doing similar things with Java
Bytecode.

oy &

5/19

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
ooe 0000 0000 [e]e]

WSL — Wide Spectrum Language

@ The tools use WSL

@ Developed by Martin Ward (since 1989)
@ Strong mathematical core

@ Formal transformations

@ Wide spectrum: from abstract specifications to low level
program code

@ MetaWSL — operations on WSL code

@ Successfully used in migrating legacy assembly code to
maintainable C/COBOL code

@ Implemented as FermaT program transformation system

SIEMAT,

)

S,
fE
g =
E

Cupgyes

Introduction Assembly Transformation Process (Micro)Java Bytecode
000 0000 0000

Presentation Organisation

e Assembly Transformation Process
@ Our Transformation Process
@ Problems

Summary

(ee]

b”u
&

WPy
s
—
—
—]

A

|

Assembly Transformation Process (Micro)Java Bytecode Summary
0000 [e]e]

Introduction
0000

Our transformation process

SRERERERERES AEEEEEEEEEENYg

-
.]
s manual : % manual !
s transf. 4 % tansf. &
L . L
‘I:IIIII" ‘...--ll#
1
asm2wsl ~ ! transf.wsl ' 1
L]
WSL h
Structured
WSL

‘ Assembly |

@ asm2wsl and transf.wsl were built “around” WSL
ST
@ Main goal is to get a high level version of the original K

Figure: Work-flow diagram

program.
8/19

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
000 0e00 0000 [e]e]

Asm2wsl application

@ Translates a subset of x86 assembly to WSL
e Mostly presumes 80286 for simplicity
@ Implemented in Java
@ Basically a line by line translator. Focus is on translating all
aspects, not optimization (at this stage)
@ Uses Action systems built into WSL for handling
unstructured code
@ We work with a “virtual” processor, simulating:
e Processor registers (with Low and High parts)

e Flags, overflow

e Stack — a list

o Labels — Action system names

e Some special macros are recognized and translated directly:Sens,
e Procedures — nested Action systems %El/n_lé

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
000 0000 0000 [e]e]

Automatic transformations — transf.wsl

@ A small script to call the existing transformations
@ Main transformations:

Collapse Action Systems
Transform DO ... OD loops
Constant propagation
Remove Redundant

Flag removal

@ Translating assembly programs to WSL so we can:
e Generate call diagrams for easier understanding of original

code;
e Automatically transform the code to much simpler versions;
. . VAT
e Optionally to manually tweak the results with more S,
. STl %
transformations P2

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
000 oooe 0000 [e]e]

Problems

Questions of feasibility of an all-high-level translation

Problematic standards — order of operands, macros,
architectures, various “hacks”, input/output

Lack of a good assembly code base to experiment on
Little experience with coding assembly — lack of “feel”
Has been done in other ways (with auxiliary files)

Plan: use mainly in Software Evolution courses for
examples and adapt if needed

0 Introduction

@ Software Evolution

@ WSL — Wide Spectrum Language
Q Assembly Transformation Process

@ Our Transformation Process
@ Problems
e (Micro)Java Bytecode
@ Bytecode

@ Type System
© summary

@ Results and open questions

«0)>» «F»r « =)»

<

v

)

)

Yo O
1PN G4
12/19

Introduction Assembly Transformation Process (Micro)Java Bytecode
000 0000 @000

Java Bytecode

@ Similar to “classic” assembly in many ways
@ Has a standard virtual machine
@ Widely used, even by other language compilers

@ A lot of code available, as well as experience in working
with it.

@ Plan: build translators to and from WSL

@ Useful for formal verification or transformation, as well as
code compiled from non-Java languages

Summary
[e]e]

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
000 0000 0000 [e]e]

Microdava Bytecode

@ First step: use Microdava — proof of concept

@ Developed by Hanspeter Moessenboeck, for use in
Compiler Construction courses; not the same as “Java ME”

@ Concepts are similar to “full” Java Bytecode, but simplified

@ Less instructions, only int and char primitive types, arrays
and basic classes

@ MJ Bytecode does not encode types
@ New tool mjc2ws/ (mjc — MicroJava Compiled)

@ Similar in many ways to asm2wsl — local variables, stack
etc.

Summary

(Micro)Java Bytecode
(ee]

Assembly Transformation Process
[e]e] o]

Introduction
000 0000

Generalized transformation process

FYYTTIIIIII
manual
transf.

&
Ll
Ll
Ld
L4
--'-----’

.
.
.
.
.
.

P — ~
:I Java bytecode _)< jb2wsl 5’

|

1 | Future work

W - - —-—-—-=-=

Figure: Generalized work-flow diagram

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
000 0000 oooe [e]e]

Type system

@ WSL has no type system
@ Therefore transformations can’t check type consistency,
possible source of errors.

@ This is necessary for “full” Java Bytecode

@ A Wide Spectrum Type System was developed by Matthias
Ladkau in his PhD thesis

@ Not yet fully integrated into FermaT

@ It could be used to improve many of the transformations —
one of the goals of this project

0 Introduction

@ Software Evolution
@ WSL — Wide Spectrum Language
Q Assembly Transformation Process
@ Our Transformation Process
@ Problems

Q (Micro)Java Bytecode
@ Bytecode

@ Type System
e Summary

@ Results and open questions

«O>» «F»r «=>»

Introduction Assembly Transformation Process (Micro)Java Bytecode Summary
[e]e]e} 0000 0000 o0

Summary

@ Previously: tools for some basic assembly conversion and
transformation
@ New tools for translating MicroJava Bytecode (simplified
Java)
@ Future work
e Further work on the MJ Bytecode translator and
transformations
e Development of WSL to MJ Bytecode translators

e Integration of the Wide Spectrum Type System into FermaT
e Development of Java Bytecode translators to and from WSL

Questions?

<

>

	Introduction
	Software Evolution
	WSL – Wide Spectrum Language

	Assembly Transformation Process
	Our Transformation Process
	Problems

	(Micro)Java Bytecode
	Bytecode
	Type System

	Summary
	Results and open questions

