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Software Evolution

@ Software does not degrade with time on its own, the
environment changes

@ A need for constant maintainance and enhancement
@ Software Evolution is (largely) repeated reengineering.

@ Previously our group built tools with aim to make old, low
level, assembly code easier to understand, and hopefully
restructure it.

@ Currently we are working on doing similar things with Java
Bytecode.
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WSL — Wide Spectrum Language

@ The tools use WSL

@ Developed by Martin Ward (since 1989)
@ Strong mathematical core

@ Formal transformations

@ Wide spectrum: from abstract specifications to low level
program code

@ MetaWSL — operations on WSL code

@ Successfully used in migrating legacy assembly code to
maintainable C/COBOL code

@ Implemented as FermaT program transformation system
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Our transformation process
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@ asm2wsl and transf.wsl were built “around” WSL
ST
@ Main goal is to get a high level version of the original K

Figure: Work-flow diagram
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Asm2wsl application

@ Translates a subset of x86 assembly to WSL
e Mostly presumes 80286 for simplicity
@ Implemented in Java
@ Basically a line by line translator. Focus is on translating all
aspects, not optimization (at this stage)
@ Uses Action systems built into WSL for handling
unstructured code
@ We work with a “virtual” processor, simulating:
e Processor registers (with Low and High parts)

e Flags, overflow

e Stack — a list

o Labels — Action system names

e Some special macros are recognized and translated directly:Sens,
e Procedures — nested Action systems %El/n_lé
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Automatic transformations — transf.wsl

@ A small script to call the existing transformations
@ Main transformations:

Collapse Action Systems
Transform DO ... OD loops
Constant propagation
Remove Redundant

Flag removal

@ Translating assembly programs to WSL so we can:
e Generate call diagrams for easier understanding of original

code;
e Automatically transform the code to much simpler versions;
. . VAT
e Optionally to manually tweak the results with more S,
. STl %
transformations P2
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Problems

Questions of feasibility of an all-high-level translation

Problematic standards — order of operands, macros,
architectures, various “hacks”, input/output

Lack of a good assembly code base to experiment on
Little experience with coding assembly — lack of “feel”
Has been done in other ways (with auxiliary files)

Plan: use mainly in Software Evolution courses for
examples and adapt if needed
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Java Bytecode

@ Similar to “classic” assembly in many ways
@ Has a standard virtual machine
@ Widely used, even by other language compilers

@ A lot of code available, as well as experience in working
with it.

@ Plan: build translators to and from WSL

@ Useful for formal verification or transformation, as well as
code compiled from non-Java languages
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Microdava Bytecode

@ First step: use Microdava — proof of concept

@ Developed by Hanspeter Moessenboeck, for use in
Compiler Construction courses; not the same as “Java ME”

@ Concepts are similar to “full” Java Bytecode, but simplified

@ Less instructions, only int and char primitive types, arrays
and basic classes

@ MJ Bytecode does not encode types
@ New tool mjc2ws/ (mjc — MicroJava Compiled)

@ Similar in many ways to asm2wsl — local variables, stack
etc.
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Generalized transformation process
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Figure: Generalized work-flow diagram
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Type system

@ WSL has no type system
@ Therefore transformations can’t check type consistency,
possible source of errors.

@ This is necessary for “full” Java Bytecode

@ A Wide Spectrum Type System was developed by Matthias
Ladkau in his PhD thesis

@ Not yet fully integrated into FermaT

@ It could be used to improve many of the transformations —
one of the goals of this project
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Summary

@ Previously: tools for some basic assembly conversion and
transformation
@ New tools for translating MicroJava Bytecode (simplified
Java)
@ Future work
e Further work on the MJ Bytecode translator and
transformations
e Development of WSL to MJ Bytecode translators

e Integration of the Wide Spectrum Type System into FermaT
e Development of Java Bytecode translators to and from WSL
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